\begin{tabbing} ES0 \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=$E$:Type\+ \\[0ex]$\times$EqDecider($E$) \\[0ex]$\times$$T$:(Id$\rightarrow$Id$\rightarrow$Type) \\[0ex]$\times$$V$:(Id$\rightarrow$Id$\rightarrow$Type) \\[0ex]$\times$$M$:(IdLnk$\rightarrow$Id$\rightarrow$Type) \\[0ex]$\times$Top \\[0ex]$\times$${\it loc}$:($E$$\rightarrow$Id) \\[0ex]$\times$${\it kind}$:($E$$\rightarrow$Knd) \\[0ex]$\times$${\it val}$:($e$:$E$$\rightarrow$eventtype(${\it kind}$;${\it loc}$;$V$;$M$;$e$)) \\[0ex]$\times$${\it when}$:($x$:Id$\rightarrow$$e$:$E$$\rightarrow$$T$(${\it loc}$($e$),$x$)) \\[0ex]$\times$${\it after}$:($x$:Id$\rightarrow$$e$:$E$$\rightarrow$$T$(${\it loc}$($e$),$x$)) \\[0ex]$\times$${\it sends}$:($l$:IdLnk$\rightarrow$$E$$\rightarrow$(Msg\_sub($l$;$M$) List)) \\[0ex]$\times$${\it sender}$:(\{$e$:$E$$\mid$ isrcv(${\it kind}$($e$)) \}$\rightarrow$$E$) \\[0ex]$\times$${\it index}$:($e$:\{$e$:$E$$\mid$ isrcv(${\it kind}$($e$)) \}$\rightarrow\mathbb{N}$$_{\mbox{\scriptsize $<\parallel$${\it sends}$(lnk(${\it kind}$($e$)),${\it sender}$($e$))$\parallel$}}$) \\[0ex]$\times$${\it first}$:($E$$\rightarrow\mathbb{B}$) \\[0ex]$\times$${\it pred}$:(\{${\it e'}$:$E$$\mid$ $\neg$${\it first}$(${\it e'}$) \}$\rightarrow$$E$) \\[0ex]$\times$${\it causl}$:($E$$\rightarrow$$E$$\rightarrow$Prop) \\[0ex]$\times$ESAxioms(\=$E$;$T$;$M$;\+ \\[0ex]${\it loc}$;${\it kind}$;${\it val}$; \\[0ex]${\it when}$;${\it after}$; \\[0ex]${\it sends}$;${\it sender}$;${\it index}$; \\[0ex]${\it first}$;${\it pred}$; \\[0ex]${\it causl}$) \-\\[0ex]$\times$ESAtomAxiom\{i:l\}($T$;$\lambda$$i$,$k$. kindcase($k$; $a$.$V$($i$,$a$); $l$,$t$.$M$($l$,$t$) )) \\[0ex]$\times$Top \- \end{tabbing}